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On the Lifschitz Singularity and the Tailing 
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We prove rigorously the existence of a Lifschitz singularity in the density 
of states at zero energy in some random lattice systems of noninteracting 
bosons and fermions in any number v of dimensions. The basic tool is a 
simple modification of the method of Fukushima to yield the correct upper 
and lower bounds for all v. We also comment on the mathematical difference 
between the models treated and the system of phonons with mass disorder 
in the harmonic approximation, whose behavior is known to be of Debye 
form, not Lifschitz, at low temperatures. 
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1. I N T R O D U C T I O N  

Several  recent  papers  have been devoted  to the s tudy o f  the so-called Lifschitz 
s ingular i ty  ~m of  the average densi ty  o f  states ( g ( - ) )  in r a n d o m  systems at  zero 
energy. (7,12'~6'18,~9~ This is an essential  s ingular i ty  o f  the type  

(g(oJ)) ~oj,~0 e x p [ - c o n s t / o J  ~/2] (1) 

where  v is the number  o f  space dimensions ,  and  leads to a s ingular i ty  o f  a 
s imilar  type for  some t h e r m o d y n a m i c  funct ions,  such as the specific heat,  a t  
t empera tu re  zero. Lifschi tz 's  der iva t ion  (Ref. 11; see also Ref. 16) is a 
beaut i ful  bu t  heurist ic  physical  a rgument ,  which is also briefly discussed f rom 
the po in t  o f  view of  the connec t ion  with Griff i ths '  s ingulari t ies  (17~ in Refs. 7 
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and 18. Lifschitz also gave arguments to evaluate the constant in the ex- 
ponential in (1). We shall refer to the latter, for brevity, as the "Lifschitz 
constant"  and to the exponent v/2 as the "Lifschitz exponent." 

The problem has also been studied rigorously in some models. ~1-4'8'9~ 
In particular, the model with one-particle Hamiltonian [ - A  + q(a)] on L2(~), 
where q(a), a ~ ~, is a strong Markov process taking two values 0 and 1, has 
been treated in Ref. 3 (see also Ref. 4), and the same model on L2(~) ,  where 
q (a), a ~ R ~, is a stationary Gaussian process, has been studied in Ref. 4 
(although, however, neither the correct Lifschitz exponent nor the Lifschitz 
constant were obtained in the latter case). The one-dimensional model of  a 
harmonic crystal with mass randomness introduced in Ref. 10 was treated 
rigorously f rom the present point of  view in Ref. 8 and the general model of  
phonons with mass disorder in the harmonic approximation and any dimension 
was studied in Ref. 9. In Ref. 1 a powerful method, relying on some proper- 
ties of  the time-continuous random walk on 7] v, was developed by Fukushima, 
which allowed the proof  of  upper and lower bounds of the form of the rhs 
of  (1) in dimension v = 1 for a number  of  random lattice models. His proof  
was somewhat simplified in Ref. 2. In Section 3 we show that a simple 
modification of Fukushima's  argument allows a proof  of  upper and lower 
bounds of the form of the rhs of  (1) for all v, for the same class of  models 
treated in Ref. 1. To obtain (1) (or, alternatively, upper and lower bounds 
with the same constant in the exponential), we expect that the methods 
developed in Ref. 13 for the "Wiener  sausage" should be more suitable2 

The quantity considered in Ref. 1 and here in Section 3, the average of 
the spectral measure of  the Hamiltonian with respect to a certain vector, is 
equal (with probability one) to the "integrated density of  states" of  the 
(infinite) systems studied in Section 4 by a result due to Pasthur, ~4~ which is 
given without proof  in Section 2, where we also introduce some notation. 
In Section 4 we prove that a model of  bosons exhibits a singularity of  type (1) 
and consequently a singularity of  the specific heat at temperature T = 0 of  
type e x p [ - c o n s t / T  v/~ + 2~]. For fermions, we exhibit a very simple model of  
decoupled bands, each of them corresponding to a one-particle "t ight-  
binding" Hamiltonian of the type introduced in Section 2. As a corollary, we 
show that there exists a " ta i l ing"  of  the average density of  states in the gap 
having the Lifschitz form (1). We also comment  on the mathematical differ- 
ence between the models treated and the system of phonons with mass 
randomness in the harmonic approximation, c15~ whose behavior is known to 
be of  Debye, not Lifschitz, form at low temperatures. (9~ 

5 In fact, a result analogous to the one of Ref. 13 for the lattice was obtained very 
recently by Donsker and Varadhan5 2~ Although their result is more accurate (in 
particular, it provides the value of the Lifschitz constant), we preferred to keep the same 
elementary level of Fukushima's paper throughout, which is sufficient for our present 
purpose, i.e., exhibiting the singularity with the correct Lifschitz exponent. 
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2. M A T H E M A T I C A L  F R A M E W O R K  
A N D  DENSITY OF STATES 

Let I -  {Co = 0, el, e2 .... }, where {~}~=0.1.2 .... is an increasing sequence 
(finite or infinite) of nonnegative real numbers, and associate a measure p, to 
e, such that ~ ~ o P~ = 1. Let f2 = X a~z ~ Ia where )< ~z  ~ denotes the Cartesian 
product indexed by the points of Z v, together with the direct product (prob- 
ability) measure, which we shall denote by P. Thus f~ becomes a compact 
topological space, with family M of Borel sets, and (f~, N', P )  a probability 
space. Following mostly Ref. 1, we define a second-order difference operator 
H ~ on d~f = 12(77 ~) by 

(H~ = (72 - 2  [u(al ..... ai - 1 ..... a~) + u(al .... , a, + 1 ..... av) 
i = 1  

- 2u(a)], a ~ 2~ ~, u ~ C0(7/~) (2) 

where ~ is a positive constant, and Co(Y_ v) is the space of functions on E~ 
with finite st~pport. Let {q(a, co), a ~ 77 ~, ~ ~ f2} be the family of "a th  co- 
ordinate functions" of f2, that is, random variables defined by 

= (co,)~z': q(b, w) = cob, b E 7/~ (3) 

The q(a, co) are independent, identically distributed, nonnegative random 
variables defined on (~2, M, P). We define the operator 

(H~ = (H~ + q(a, co)u(a), a ~ 2 ~, co ~ f~ (4) 

The operator H ~ considered as a linear operator defined on (70(2 ~) is the sum 
of  the bounded self-adjoint operator H ~ and the unbounded symmetric 
multiplication operator q, which is easily seen explicitly to be essentially self- 
adjoint on C0(2~). Hence H ~ has a unique extension as a positive self-adjoint 
operator on ~ which we denote, as in Ref. 1, by H~. Express H ~ =  

fEo,~cJ x d E 2  by the associated spectral family {EJ  ~, x e JR} and put p~~ =_ 

( E J o ,  Io), where (.,  .) denotes the F inner product, and I~ (a') = 8~.~,, a, 
a' s 7/v. Denoting by (.-.) expectation with respect to P, we set 

p(x) - ( p ' ( x ) )  (5) 

Let {A} be a family of cubes centered at the origin in 2 ~, covering the 
whole of 2 ~, and PA the operator of  projection of Jt ~ onto the subspace 
C0(A) of  Co(7_ ~) consisting of  all functions with support contained in A, and 
define 

HA ~ =- PAH~ (6) 

(This corresponds to "free boundary conditions" on A. It may be verified 
by standard arguments that Proposition 2.1 below is true independent of 
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boundary conditions.) For each fixed A, HA ~ has a discrete spectrum con- 
sisting of a finite number, N(A) say, of eigenvalues {e)'~}~v=~] ~, and we may 
define the "integrated density of states" for the system A by 

1 ~ 1; w~f2, x ~ +  - [0, or) (7) 
NAO'(x) = IA l + ~  

where ]A] is the number of points in A. We remark that, in general, NA~(~) # 
1, hence NA~~ is a nonnormalized (right-continuous) distribution function. 

Proposition 2.1.~a) For all x ~ E+, limlAro= NA~(a, b] = p(a, b] al- 
most everywhere with respect to P, at all continuity points a ~ R + and b ~ I~ + 
of p, where p was defined in (5). (8) 

The proof is the same as Pasthur's~4~: his condition that q be metrically 
transitive is trivially verified in the present case because, the (v-dimensional) 
shift operator in Z ~ is ergodic (Ref. 14, p. 50; see also Ref. 8 for a similar 
application of this property to a related particular model). 

Let i f / =  (~,/~, Xt,  Pa) be the (time-continuous) simple random walk 
on Z~, t~ where P,  is the probability measure governing sample paths )/" 
starting at a. L e t / ~  denote expectation with respect to P~. Then (Ref. 1, 
Ref. 22, p. 81) we have the Feynman-Kac formula: 

(I,, [exp(- t .~)]I~)  = E~ exp - q(Y~s, oJ) ds 

This formula is a basic ingredient for the next section. 

;)/'t : a)  (9) 

3. THE I M P R O V E D  F U K U S H I M A  B O U N D  

In this section we prove the following result: 

Proposition 3.1 

lim[x ~/2 log p(x)] ~< - (v/2)~I2(v + 2)-c~12 + 1)(vcrfll/V/e)~12 
x$0 

where 

and 

fl~ =-- [log(v,r2/[v,r 2 + 2q(O)])l 

Tt2 0"2 I v/2 
li._mm[x *'2 log p(x)] > / -  ll2llogp(q(O) = 0)[ x.l,o 

(lo) 

(10 
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Proof. The upper bound follows precisely along the lines of  Ref. 1 : in 
particular, if 

N/t i> sup ]J/'s[ 
O.< s~;t 

(in the notation of Section 2), one obtains, by the method of Ref. 1, the 
inequality 

lim t -  v/(v + m log/~0(exp - f l~t)  <~ - (vfla/V'e) 21(~ + m (12) 
t -~co  

Then (10) follows from (12) (Ref. 1, Lemma 4.3) and the exponential 
Tauberian theorem [Ref. 1, Theorem 2.1(ii)]. For the lower bound, let 

k ( t ) ~  exp - q(J~)ds ; • = 0  

where ~P denotes expectation with respect to the product measure ff = P x 
Po, and let/~t(w) denote the number of different points visited by the sample 
path X,(~) during the time interval [0, t). Then, by Ref. 1, (26) (p. 82), 

k(t)  >1 Eo(exp -/32kt; gt = 0) 

where/32 - - l o g  P(q(O) = 0). Now, by an elementary geometric argument, 

& ~< ( 2 &  + 3) v 

whence 

k(t)  >t /~o{exp[-/32(237/t + 3)v]; .,('t = 0} (13) 

Let G(x) = Po(_,~/t 4 x, .,~t = 0) for every real x. By Ref. I, Lemma 3.1, and 
(13), 

fo k(t)  > 2/3ev dx {exp[-/32(2x + 3)~]}(2x + 3)V-~G(x) 

t> x 

x exp{-[~2(2x + 3 ) "  + ~r2~2v2t/8x2l}(x + V~,) -" 

J; = 2~(Vv)~/3= dy (y,l ,  + V'v)-~ 

x exp{-[flz(2fl/~ + 3) ~ + rrZ(r=vt/8y=lq} -- F(t)  
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Let e > 0 and C > 0 be for the moment arbitrary constants, to be 

such that  

- A  ~< lirn [x ~/2 log p(x)] ~< lim [x ~t2 log p(x)] ~< - B  (18) 
x~0 x$O 

Both conditions (16) are quite natural ;  the first states that  energy zero gives 
a nonzero contr ibut ion to the spectrum and the density of  states, and the 
second excludes a perfect (i.e., nonrandom)  system. 

chosen later. Then  

f 
ete 

F(t) >1 2v(V'v)~fl2 dy (yl/~ + ~/v)-v exp(-[f12(2y 1/~ + 3) ~ 
~'0 

+ 7r2crZvt/8y2/V]} 

>i 2~(V'v)~flz(Ct*/~ + ~/v)-~ 

f 
ete 

x exp[-fl2(2CU/~ + 3) ~] exp(-rrZvcr2t/8y2/0 dy 
,JO 

>1 Ct'2~(~/v)~flz(Ct*/~ + ~/v) -~ exp[-fl2(3Ct*/O~ ] 

x e x p [ -  (rr2vcr2/8C=I~)tl-2*/~] 

for  t sufficiently large. Choosing now 

8 = v / f v  + 2) 

it follows that  1 - 2(e/v) = v/(v + 2). Hence 

lim t -  ~/c~ + 2~ log r( t )  >t - 3tiC - (~r2cr2v/8C 2/~) (14) 

for  all C > 0. Taking now the maximum (in C > 0) of  the rhs of  (14), we 
find 

lim t -  ~/c~ + 2~ log K(t) t> - (zr2cr2/12fl2) ~/c~ + 2> (15) 

Relat ion (11) follows directly f rom (15) and the exponential  Tauber ian  
theorem [Ref. 1, Theorem 2.1(i)]. �9 

Remark 3. 7. Under  the conditions 

0 < P(q(O) = 0) < 1 (16) 

it follows from (10) and (1 l) that  there exist constants 

0 < A < o% 0 < B <  ~ (17) 
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4. M O D E L S  

As mentioned in the introduction, the models of  random lattice systems 
studied rigorously so far in the literature from the point of view of low- 
temperature behavior and the Lifschitz singularity belong to two different 
classes: 

(a) Noninteracting bosons or fermions with random impurities, described 
by Hamiltonians of type (4); 

(b) The harmonic crystal with random masses (see, e.g., Ref. 9 for the 
Hamiltonian), with a probability mass distribution with finite 
greatest mass and strictly positive lowest mass. 

Concerning low-energy (or low-temperature) behavior, there is a 
profound difference between the above classes: as pointed out in Ref. 9, 
low-temperature behavior of  the specific heat of systems of class (b) follows 
the Debye law, although a Lifschitz-type singularity was rigorously proven 
to exist (~ (see also Ref. 7) for a limiting case of (b), namely the one-dimen- 
sional model of Ref. 10, where the mass at each site is an independent random 
variable taking two values, m and M, with probabilities p and 1 - p, and M 
is infinite. As remarked in Ref. 9, one might expect that a Lifschitz-type 
behavior of the specific heat of the form exp [ - co n s t /T  v/(v + 2>], as we shall see 
(see also Ref. 7), would manifest itself as an in-band resonance at higher 
temperatures. 

In contrast, the low-temperature behavior of models of class (a) is of 
the Lifschitz form, as we shall see presently. [Of course, the behavior of  class 
(b) models is physically expected in view of  the interpretation of the coefficient 
of the linear term in the average density of states as the velocity of  sound in 
the medium.] For  clarity, we show now where the proof  of Ref. 9 fails for 
model (4). Suppose for simplicity that q(a, .) takes for each a ~ Z v only the 
values eo = 0 and e > 0, and denote by H ~ and H ~ (resp. HA ~ and HA ~) the 
Hamiltonians (4) [resp. (6)] where q is replaced by the constants to = 0 and 
e, respectively. Then, for all ~ ~ ~, 

HA ~ ~< HA ~ ~< HA t 

This yields, for the integrated density of states [defined as in (7)]: 

Nae(x) ~< NA~~ <~ NA~ Vw G ~, Vx e ~+ 

and hence, for the limits as [A I --> ~ ,  with probability one, 

p~(x) .<< p(x) < p~ (19) 

It follows, however, that y (x )  = 0 for 0 ~< x < e; therefore, (19) yields an 
inequality in only one direction for the behavior as x + 0 of p(x) (namely, 
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an upper bound). In the case of model (b), however, the quantities corre- 
sponding to O ~ and 0 ~ in (19) refer to the greatest and smallest mass, respec- 
tively, and their behavior as x ~ 0 is qualitatively the same. 

We consider now some possible models of class (a), to which the proofs 
in Sections 2 and 3 apply. 

4.1. Boson Systems 

One may take (4) to be the one-boson Hamiltonian of a system of 
noninteracting spin waves (i.e., Heisenberg Hamiltonian " in  the one-spin- 
wave approximation"), with random impurities. For each oJ ~ f~ and /3 
(0, m), let C~.e denote the specific heat of this (random) system enclosed in a 
cubic box A as in Section 2, and define the function 

[  x/2 12 
x ~ R + ~ he(x ) - i sinh--~/2j ] (20) 

By a standard result (see, e.g., Ref. 15, p. 46), and in the notation of Section 2, 

1 1 N(a~ 
C~~ = ~ tra[he(//A~)] = ~ ,=,~ he(e~ '~) 

f) = he(x)  dNa~ (tra = trl=(^~) (21) 

k e m m a  4.1. Let f :  R + - +  ~ be a bounded, continuous function, and 
let 

Then 

f (A,  w) = f ( x )  d N 2 ( x )  (22) 

fO *~ 
lira f (A,  co) = f ( x )  dp(x) a.e. with respect to P 

IAl~ ao 

Proof .  The result follows from Proposition 2.1 and a standard theorem 
on the vague convergence of measures (see, e.g., Theorem 4.5.4, p. 198, of 
Ref. 5). �9 

Corollary 4.1.  For  each fl E (0, oo), 

f) CB -- lira C.g,B = he(x  ) do(x  ) (23) 
IAl~oo 

a.e. with respect to P. 
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Corollary 4.2. There exists a 3 > 0 and strictly positive finite constants 
C1, C2, Az, and A2 such that, for all 0 ~< T ~< 3, 

C2 exp( -A2/T ~/~+2~) ~< C~ ~< C1 e x p ( -  Az/T ~I~+2~) (24) 

Proof. This is a sort of  "Abe l i an"  theorem in the temperature and may 
be proven, for instance, by splitting the interval [0, ~ )  in (23) in the following 
way: 

[0, oo) = [0, T ~:<~+~>) U [ T~:~+~, oo) 

One then applies (10) and (11) to each part, as in Ref. 7 :  [ ]  

4.2. Fermion Systems 

We consider here a very simple and idealized model of  two decoupled 
bands. The perfect system is described by the Hamiltonian [on ~ :  | ~ ,  where 

= z~(7 / ' , ) ]  

H = ( - H  o - Vl/2) | ~ + ~ | (H  ~ + Vl/2) 

where V1 is a positive constant (the " b a n d  gap"),  and H ~ is the "t ight-  
binding" Hamiltonian (3). The spectrum Z~ of H is given by (Ref. 11, 
Theorem VIII-33, Corollary) 

Xn = [-Y~no - V~/2, - Vl/2] U [VJ2, Y~o + 1/1/2] 

where Z~0, the spectrum of H ~ is an absolutely continuous " b a n d "  starting 
at zero, as is easily proved from the explicit form (2). The random system is 
described by the Hamiltonian 

/ 7 ~ _ H - - ~ |  + ~ |  ~, ~ o ~  

on ~ | ~ ,  where 

B :  = B ~ + v~/2, ~ :  - - g ~  - v A2  

and f f~  is the same operator defined in Section 2 [from (4)], where, however, 
the random variables q(a, co) are assumed to take, for each a ~ 77 ~, the possible 
values in the set 

I - {e0 = - / / '2 ,  el,..., eN = + V2} 

where 

0 < V2 < V1/2 

6 Some obvious modifications should be made in this proof to allow for the fact that 
the support of p(.) may be pure point, everywhere dense on a subset of R+ containing 
the origin, as is the case in the model introduced in Ref. 10 (see Ref. 8), as well as in all 
models treated in the present paper, at least when v = 1. (19~ 
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is the "spreading constant." Hence, the spectrum Z ~ of ~0~ is given by 
(Ref. 21, Theorem VIII-33, Corollary) 

z ~ = z(~ql~)  + x(~q2 o) 

and is therefore contained in the union of the sets 

and 

[--ZHO- V z / 2 -  V 2 , - ( V z / 2 -  V2)] 

[ V z / 2 -  V2, ZHo + II1/2 + V21 

By a proof analogous to that in Section 2, the "integrated density of  
states" # of the random system (defined as in Section 2) is, with probability 
one, 

p(x) = p~(x) + p2(x), x ~ ~ (25a) 

where 

and 

pz(x) ~ p(x - (Vz/2 - V2)) (25b) 

p2(x) = p ( - x  + (V1/2 - V~)) (25c) 

where p is the same quantity defined in Section 2. We see from (25) that 
presents in the regions IV2, 1/1/2] and [ -  111/2 - V2] a "tai l ing" relative to 
the density of states of the perfect system (which has support contained in 
Zn), which is of the Lifschitz form near the end points ( V ~ / 2 -  V2) and 
- ( V 1 / 2 -  V~). 

Clearly, this model is constructed so as to exhibit the Lifschitz " tai l ing" 
phenomenon, which has received so much attention in the theory of random 
media (see Ref. 22 for a nice review). We hope, however, to obtain a behavior 
of the type described in this section from a more realistic model, inspired by 
Ref. 23, where the physical meaning of the constants Itl and /I2 will also be 
better elucidated. This will be dealt with elsewhere. C2~ 
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